next up previous contents
Next: Minimalization Up: Recursive functions Previous: Composition   Contents

Primitive recursion

Given $g : \mathbb{N}^k \to \mathbb{N}$ and $h : \mathbb{N}^{k{+2}} \to \mathbb{N}$, the function $f : \mathbb{N}^{k{+1}} \to \mathbb{N}$ is defined by primitive recursion from $g$ and $h$ if the following equalities hold:


\begin{displaymath}
\begin{array}{lcl}
f(0,n_1,n_2,\ldots,n_k) & = & g(n_1,n_2,...
...& = & h(n, f(n,n_1,n_2,\ldots,n_k), n_1,\ldots,n_k)
\end{array}\end{displaymath}

Here are some examples of primitive recursive definitions.



Madhavan Mukund 2004-04-29